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INTRODUCTION 

Data Grids are a great mechanism for prob-
lem solving in virtual organizations [1]. The 
emergence of Grid Computing was crucial facili-
tating groundwork for many disciplines such as 
engineering, science, earth sciences, high energy 
physics, astronomy and molecular biology. Grid 
computing has the possibility to back diff erent 
types of applications. For example, data-inten-
sive applications, computer-intensive applica-
tions and the applications demanding scattered 
services. Three sorts of Grids advanced to pro-
vision these applications. They are character-
ized as Service Grids, Computational Grids and 
Data Grids. Data grids are anticipated to be the 
solution to the huge data storage issue and com-
putational power issue of numerous current sci-
entifi c projects. The evolving move in scientifi c 
applications in various fi elds like climate simu-
lation [2], high-energy physics and data mining, 
demonstrates that such applications manipulate 

and yield enormous amounts of data [3]. These 
rustling huge data needs to be put in storage for 
additional exploration and shared with scholars 
collaborating within the scientifi c community 
who are scattered everywhere in the world.

Replica Selection [4] is a mechanism to 
choose the best replica place amongst several 
replica locations according to quality of service
(QoS) parameters. There are several QoS param-
eters like response time (RsT), security, avail-
ability, reliability, and cost are very important and 
have crucial impact on the Grid environment as 
explained in [1, 5–7]. RsT or for simplicity time 
is a vital element that eff ects the replica selection 
and thus the job turnaround time. Earlier replica 
selection algorithms addressed time QoS param-
eter as the only parameter, and dedicated or shed 
on estimating it and put all the eff orts in selecting 
the replica place with fastest replica movement, 
from source to sink. 

However, selecting the best replica place to a 
user who is not capable of utilizing the full speed 
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replica transfer due to limitation of his network 
or hardware capabilities compared to the selected 
location, prevent other capable users from fully 
utilizing it, and switches them to a poorer quality 
grid sites. As a result, this situation demonstrates 
the bad impact on the capable users’ performance 
and this will impact the whole data grid environ-
ment. Therefore, in this research, the replica se-
lection is addressed from both sides, the sender 
and the receiver. It is, in all situations, better to 
choose a replica location that is consistent with 
or similar to the receivers capabilities. The pre-
vious mentioned case converts the problem from 
selecting the best replica location to selecting the 
best-fit replica location in order to improve the 
whole grid environment. So, the proposed algo-
rithm takes into account two variables to decide 
the best replica location first it considers the capa-
bility of the user and second the capability of the 
data grid site. This algorithm is titled The best-fit 
algorithm (BFA). In this research, suitable replica 
and best-fit replica will be used interchangeably.

The rest of the paper is organized as follows. 
Section II describes the related work in replica 
management. Section III presents the system design 
while Section IV shows the performance evalua-
tion. Section V presents the results and discussion. 
Finally the conclusion and future work are given.

RELATED WORK 

The challenge in replica selection research be-
gan by considering the RsT as the only QoS fac-
tor to address. RsT is the amount of time required 
to transfer the replica from source to sink’s local 
storage where the running task is being executed 
[8]. In this context many researches addressed 
the problem of finding the best replica place that 
show minimum RsT. However; since the RsT 
cannot be computed in advanced the main chal-
lenge was how to estimate the RsT [9] as there are 
many factors that play a role in estimating RsT. 
These include maintaining the previous RsT his-
tories experienced by grid users. 

Early replica selection paradigms [10] intend-
ed to choose the closest replica location to the grid 
user based on some static metric factors like : to-
pological distance based hop counts, geographical 
distance in miles and utilize it for future prediction. 
On the other hand, authors of [11] utilize probing 
messages that sent from replica sites to grid user 
to first check the availability of the machine that 

holds the replica and second to find the grid site 
that shows shortest RsT to conclude it as the best 
replica location. Nevertheless, these approaches 
ignored the dynamic network nature which make 
these static metrics not adequate estimators to an-
ticipate RsT. Authors of [8] argued that RsT is the 
sum of storage access latency (SAL), transfer time 
and request waiting time in the queue. 

Dynamic paradigms for selecting the best 
replica [2, 9, 12] have arisen to enhance the es-
timated RsT anticipated by the data-grid-users, 
according to calculations of the network crite-
ria, like: the hosted server latency for the request 
and the bandwidth of the network. A smart fore-
cast founded on historic system logs is utilized 
to select the best replica location that shows the 
slightest transfer time. These techniques relay 
on data grid services to observer the resource 
powers and the conditions of the network, like 
the Grid Resource Information Services (GRIS) 
and the Network Weather Service (NWS) [13]. 
Authors of [2] during the run time, have used 
the bandwidth of the networks to automatically 
decide on the proper site that holds the replica. 
Definitely, this approach adjusts based on band-
width fluctuations. On the other hand, the estima-
tion tool of the researchers of [12] have relayed 
on only logs originated form GridFTP. However 
authors of [14] clarified why the GridFTP is not 
adequate for RsT estimation, instead a regres-
sion method has been constructed to estimate 
the time to move the best replica to the required 
location utilizing grid services : I/O Disk, NWS, 
GridFTP. Moreover researchers of [4,7] have 
incorporated the RsT with SAL where storage 
latency past history and data transfer time are 
utilized as a forecaster of future SAL but future 
forecast for SAL cannot be very precise due to 
grid resources dynamicity like storages as they 
fluctuate or upgrade as time passes.

For instance, the best replica place chosen 
from a given storage will not be the best place 
after a period of time due to utilization by the 
same or other grid user. However, techniques 
rely on historic information are more applicable 
in a steady grid environment. On the other hand 
authors of [8] take into account two new param-
eters firstly storage media specification which 
differ in speeds from one type to other or from 
brand to brand [15] the speed is measured as an 
I/O data transfer rate. It is well known that the 
tape drive is slower than the hard disk and the 
hard disks or the tape drives have different types 
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or speeds. Secondly, taking into account orders 
in que as utmost mass storage devices can’t take 
more than one order simultaneously as a result 
the incoming orders have to wait in ques before 
being served. In fact the thousands of orders to 
a certain storage device in grid environment, so 
the orders are queued in a storage handler queue 
which effect the RsT [16].

Furthermore, strategies [17, 18] utilized par-
allel replica movement to escalate RsT where 
the needed replica is transferred concurrently 
from all the grid sites that held the required rep-
lica. In these techniques the needed replica is 
divided into parts and each part is moved from 
the available data grid site. The researchers of 
[18] introduced a novel replica transference 
technique labelled as rFTP that fetches replica 
fragments simultaneously while authors of [17] 
introduced three fetching approaches that are: 
matching with prediction approach, greedy ap-
proach and uniform approach. In matching with 
prediction approach, every replica site is in 
charge of a non-fixed quota of fragments that 
are consistent with its past performance saved 
in the log files. On the other hand, in the greedy 
approach, the needed data file is divided into 
fragments and each data grid site is assigned 
one fragment while in the uniform approach 
the needed replica is divided into equally fixed 
sized fragments consistent with the available 
number of data grid sites. However, concurrent 
approaches are suitable when there are few rep-
lica orders and lots of replica sites but usually 
the vice versa happened huge number of orders 
and a limited replica locations. 

Finally, as mentioned above several research-
es integrated a number of QoS parameters a part 
of RsT such as reliability, security, availability 
in the selection process [1, 19–24]. In addition 
to these QoS parameters some works also added 
users preferences to guide the selection process 
[6, 25]. Moreover, a recent work went for group 
decision making by considering multiple users 
preferences simultaneously prior to assign users 
to replica grid sites [6].

SYSTEM DESIGN 

The structure of data grids is built into two 
levels lower and upper. The lower one provides 
fundamental services and the upper consists of a 
high-level service that supply fundamental servic-
es in the lower level. The new proposed algorithm 
is amongst the high level services which utilize 
several fundamental services. BFA works by ob-
taining the data grid users order from the Resource 
Broker (RB) and questions the Replica Location 
Service (RLS) for the associated physical replica 
title and their places. BFA receives the data grid 
nodes interrelated situation and the status of the 
network from GRIS [13] like GridFTP, Moni-
toring and Discovery Service (MDS) and NWS. 
Consequently, the best-fit place is chosen for the 
grid user’s task. In fact, the best-fit replica place in 
this research means the place with specifications 
that can send the file to the grid user in a speed 
that the user can absorb without delay or without 
a congestion at the user site. Figure 1, presents an 
overview of BFA and its related entities.

Fig. 1. Overview of BFA & Surrounded Entities
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Hence, BFA is a high level, dynamic , op-
timization service, where the best-fit replica 
place for a certain data grid user may not be the 
best-fit replica place for other grid users or the 
same user as time passes and this is because the 
dynamic nature of data grid resources. To select 
the best-fit replica place the algorithm behaves 
as follows:
1. Obtain the tasks from the RB.
2. Collects the places of the replicas from RLS. 
3. Collects historical logs from the system files. 
4. Collects the instant values of QoS parameters 

like the bandwidth from the information ser-
vice provider like GridFTP, MDS and NWS.

5. Evaluate each replica place based on its RsT 
and assign it a rate value.

6. Evaluate the requesting user QoS parameters 
and assign it a RsT value.

7. Sort replica places based on their RsT values in 
an ascending order. 

8. Select the best-fit replica place for the un-
derlying user, which shows a RsT of equal or 
greater value.

9. Record the latest information concerning the 
data transmission speed into the historic logs.

RsT in this study is the total of three parameters 
that are: Transfer time (TT), Storage access latency 
(SAL) and the waiting time in the queue (WTQ) 
and is calculated by the following equation:

RsT =  TT +  SAL +  WTQ  (1)

TT denotes the replica movement through the 
network, that rely on the network bandwidth and 
the file size [16] obtained by the formula: 

 TT =  
File Size MB
Bandwidth   (MB /SEC) 

 

(2)

The important role of the operating system is 
to schedule the I/O requests in a manner that en-
hance the system performance [26].

Scheduling considers queued requests for the 
storage device. Therefore, the number of requests 
in queue and the speed of the storage device and 
have a significant influence in the average RsT.

As a result, SAL is time delay required by 
the storage device to reply to an order and it is 
relevant to the file size and storage speed. Conse-
quently, larger replicas yields higher SAL which 
can be calculated by the following formula: 

 SAL =
File Size MB

Storage Speed
 (MB /SEC) 

 
 

(3)

Typically, orders arrive to each storage device 
that can’t serve them simultaneously as it can serve 
one order at a time, hence several orders queued 
forming a waiting in the queue. Therefore, the cur-
rent order has to wait for all former queued orders. 
The time needed for the underlying order that is 
the first one in the queue of order is the same SAL 
time, so has to wait for the sum of SALs of the 
preceding orders in the queue. Accordingly, WTQ 
is calculated by the following formula: 

WTQ = � SAL
n

i=1

 

 

(4)

where:  n – number of orders waiting in the queue 
preceding the current order.

PERFORMANCE EVALUATION

A collection of simulation tools available to 
support the data grids structures [27]. For ex-
ample MicroGrid, ChicSim, Monarc, OptorSim, 
SimGrid and Bricks. But, after carrying tech-
niques [3, 28]. Accordingly, this research adopted 
out a comprehensive search on parallel and dis-
tributed algorithms simulation tools the conclu-
sion is OptorSim simulator is the most suitable 
one for the proposed algorithm as it mainly fo-
cuses on replica choice tactics and data replica-
tion OptorSim by performing tiny amendments to 
make it more fit to the proposed algorithm.

Simulation Setup

In order to assess the performance of rep-
lica selection methods the OptorSim simulator 
was built and was unlike other task scheduling 
algorithms. OptorSim consists of several ele-
ments to attain realistic grid environment such 
as Computing Elements (CEs) where tasks are 
directed, Storage Elements (SEs) where data is 
saved. The network elements to link data grid 
nodes. Like real grids the bandwidth between 
the grid nodes is embodied in the simulation. 
The other elements are the Resource Broker 
(RB), that assigns tasks to grid nodes based 
on the scheduling technique. Where Replica-
tion Manager (RM) contributes to the replica-
tion optimization techniques. To be consistent 
with real grids, OptorSim imitate the real EU 
DataGrid configuration and topology. The to-
pology includes 20 grid nodes in Europe and 
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the USA that have been utilized during the 
data production form of CMS experiment [28]. 
FNAL and CERN sites create the huge data and 
save them locally with a storage volume of 100 
GB each and other grid nodes have a minimum 
of one CE with a storage volume of 50 GB each.

Performance metrics

The roles of grid users takes place by send-
ing their tasks to RB that searches for the best 
grid location to carry out the task. However, 
usually these tasks need data files so the opti-
mizer role is to get the best place of the needed 
files for the tasks. Nevertheless, the task needs 
to wait in the queue and requires some time to 
be accomplished. 

As a result, the task’s duration begins when 
the RB sends the task and completed once the 
task’s accomplished. This duration is known as 
task turnaround time and comprises the RsT. 
The best-fit replica selection based on the new 
proposed algorithm decreases the RsT and ac-
cordingly decreases the task turnaround time. 
For that reason, the Mean task Turnaround 
Time (MTTT) is an appropriate performance 
metric that assesses the performance of the 
proposed algorithm and is calculated by the 
following formula:

MTTT = �CNTM− ARTM
n

1

/n (5)

where: arrival-time (ARTM) – Task’s arrival and 
execution time; completion-time (CNTM) 
– Task’s completion time; n – the over-all 
number of tasks.

RESULTS AND DISCUSSION

MTTT is the proposed metric to evaluate 
and compare the new algorithm and it stands 
for the average of the whole times needed to 
complete all the tasks submitted to the grid. 
Based on the fact that the sizes of the replicas 
and the number of the tasks (workload) impact 
the replicas transfer time, the performance of 
the new algorithm has been evaluated through 
nine different cases, by changing the size of the 
replicas and the number of the tasks each time. 
In the first case, small replicas has been used 
with sizes range between 100 to 1000 MB and 
workload 600 tasks while the second case with a 
workload of 1200 tasks and the third case with a 
workload equal to 1800 tasks as shown in Table 
1. Cases four to six are similar to one to three 
but with medium replicas with sizes range be-
tween 1 to 10 GB as shown in Table 2. Cases 
seven to nine are similar to the previous ones 
but with large replicas with sizes range between 
10 to 100 GB as shown in Table 3. Each case 
has been experimented ten times each time the 
replica sizes and sites QoS are varied randomly. 
The experiments carried out utilizing the pro-
posed algorithm (BFA) and the previous algo-
rithm (PA) in order to choose the best replica 
place that has the lowest transferal time and 
already included in OptorSim [2, 18]. The al-
gorithms do not make replication or caching, 
instead they read the chosen replicas remotely. 
The simulation results demonstrated that the 
MTTT experienced by the proposed algorithm 
is less than MTTT experienced by the previous 
algorithm for all cases as presented in Tables 1 

Table 1. Simulation results for small replicas
Experiment 

No
600 Tasks 1200 Tasks 1800 Tasks

BFA BFA Efficiency BFA BFA Efficiency BFA BFA Efficiency

1 56.68 49.34 14.9% 557.39 488.37 14.1% 2889.05 2506.02 15.3%

2 54.25 47.31 14.7% 555.56 487.61 13.9% 2895.28 2525.93 14.6%

3 55.49 48.1 15.2% 551.1 479.11 15.0% 2721.57 2413.30 12.8%

4 55.42 48.12 15.2% 539.98 473.38 14.1% 2755.83 2413.58 14.2%

5 55.58 48.22 15.3% 550.23 482.91 13.9% 2799.91 2431.64 15.1%

6 57.6 50.21 14.7% 546.6 477.10 14.6% 2874.45 2513.58 14.4%

7 56.22 49.2 14.3% 574.43 496.99 15.6% 2909.35 2524.46 15.2%

8 54.71 47.29 15.7% 563.15 488.15 15.4% 2802.35 2442.28 14.7%

9 53.25 46.59 14.3% 539.89 473.01 14.1% 2799.13 2438.91 14.8%

10 55.73 48.2 15.6% 558.44 487.30 14.6% 2796.01 2441.66 14.5%

MTTT 55.49 48.26 15.0% 553.68 483.39 14.5% 2824.30 2465.14 14.6%
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to 3 and Figure. 2. Additionally, the efficiency 
of the proposed algorithm is calculated to prove 
its superior performance over the previous one 
using the following formula: 

Efficiency =
PA − BFA

PA
 × 100 (6)

Table 1 demonstrates that in all the experi-
ments BFA performs better than PA. The efficiency 
of BFA is 15.6% at its best and 14.3% in its worst 
case when the number of tasks is 600 while the ef-
ficiency ranges between 13.9% and 15.6% when 
the number of tasks is 1200 and ranges between 
12.8% to 15.3 when the number of tasks 1800. The 
efficiencies in all experiments is slightly different 
which indicates the robustness of the proposed 
algorithm. BFA performs better in all scenarios, 
where the response time is reduced, the task turn-
around time is reduced respectively. Furthermore, 

the proposed algorithm can scale up from hundreds 
to thousands of tasks. Table 2 and 3 demonstrate 
almost similar results to Table 1, which indicates 
scalability in terms of replica size in addition 
to scalability in terms of number of tasks which 
proves that BFA always outperforms PA.

CONCLUSION

The response time is the only variable that 
has been addressed when choosing the best rep-
lica place for the running task. Simulation results 
proved that the proposed algorithm surpasses the 
previous algorithm and can deliver the replicas to 
grid tasks in the shortest time. With a significant 
increase in performance of 12.8–16% decrease in 
the time needed to complete all the tasks submit-
ted to the grid. Additionally, we found that the 

Table 2. Simulation results for medium replicas

Experiment 
No

600 Tasks 1200 Tasks 1800 Tasks

PA BFA Efficiency PA BFA Efficiency PA BFA Efficiency

1 106.33 92.25 15.3% 1110.20 971.43 14.3% 5561.97 4882.94 13.9%

2 109.34 94.60 15.6% 1087.41 943.29 15.3% 5801.06 5056.86 14.7%

3 110.33 95.51 15.5% 1069.85 933.92 14.6% 5626.37 4887.4 15.1%

4 109.24 95.63 14.2% 1087.21 950.78 14.3% 5612.43 4876.26 15.1%

5 110.31 95.90 15.0% 1116.81 972.04 14.9% 5622.15 4893.43 14.9%

6 108.98 94.15 15.8% 1099.60 966.26 13.8% 5511.33 4799.63 14.8%

7 109.58 95.64 14.6% 1095.07 955.52 14.6% 5567.91 4846.57 14.9%

8 108.75 94.87 14.6% 1129.33 979.72 15.3% 5472.84 4811.44 13.7%

9 110.22 95.10 15.9% 1105.08 960.92 15.0% 5631.42 4918.67 14.5%

10 110.09 96.46 14.1% 1103.54 961.76 14.7% 5711.34 4988.07 14.5%

MTTT 109.32 95.01 15.1% 1100.41 959.56 14.7% 5611.88 4896.13 14.6%

Table 3. Simulation results for large replicas

Experiment 
No

600 Tasks 1200 Tasks 1800 Tasks

PA BFA Efficiency PA BFA Efficiency PA BFA Efficiency

1 168.58 146.59 15.0% 1647.69 1436.15 14.7% 8388.2 7309.35 14.8%

2 167.65 146.04 14.8% 1668.59 1449.71 15.1% 8309.96 7259.99 14.5%

3 160.29 140.07 14.4% 1609.33 1394.26 15.4% 8365.53 7302.63 14.6%

4 168.59 146.10 15.4% 1632.46 1427.44 14.4% 8365.92 7284.88 14.8%

5 168.32 146.34 15.0% 1659.84 1453.31 14.2% 8469.45 7399.05 14.5%

6 165.65 143.62 15.3% 1652.73 1443.91 14.5% 8423.89 7390.56 14.0%

7 159.97 139.01 15.1% 1642.65 1436.89 14.3% 8531.20 7401.64 15.3%

8 163.17 142.08 14.8% 1660.40 1452.82 14.3% 8331.64 7234.12 15.2%

9 168.73 145.65 15.8% 1658.07 1450.43 14.3% 8383.55 7229.71 16.0%

10 162.57 140.73 15.5% 1639.79 1425.14 15.1% 8464.45 7394.14 14.5%

MTTT 165.35 143.62 15.1% 1647.16 1437.01 14.6% 8403.38 7320.61 14.8%
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best performance (≈16% decrease in turnaround 
time) was exhibited when there was a larger num-
ber of tasks and the highest number of tasks. This 
in turn decreases the turnaround time for all jobs 
improving the whole data grid environment. The 
proposed algorithm can be incorporated in a real 
grid middleware like Globus. Our future work 
will focus in implementing the proposed algo-
rithm on cloud computing.
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